Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids.
نویسندگان
چکیده
The Wiedemann-Franz law, connecting the electronic thermal conductivity to the electrical conductivity of a disordered metal, is generally found to be well satisfied even when electron-electron (e-e) interactions are strong. In ultraclean conductors in the hydrodynamic regime, however, large deviations from the standard form of the law are expected, due to the fact that e-e interactions affect the two conductivities in radically different ways. Thus, the standard Wiedemann-Franz ratio between the thermal and the electric conductivity is reduced by a factor 1+τ/τ(th)(ee), where 1/τ is the momentum relaxation rate and τ(th)(ee) is the relaxation time of the thermal current due to e-e collisions. Here we study the density and temperature dependence of 1/τ(th)(ee) of two-dimensional electron liquids. We show that at low temperature 1/τ(th)(ee) is 8/5 of the quasiparticle decay rate; remarkably, the same result is found in doped graphene and in conventional electron liquids in parabolic bands.
منابع مشابه
Large violation of the Wiedemann-Franz law in Luttinger liquids.
We show that in weakly disordered Luttinger liquids close to a commensurate filling the ratio of thermal conductivity kappa and electrical conductivity sigma can deviate strongly from the Wiedemann-Franz law valid for Fermi liquids scattering from impurities. In the regime where the umklapp scattering rate Gamma(U) is much larger than the impurity scattering rate Gamma(imp), the Lorenz number L...
متن کاملViolation of the Wiedemann-Franz law in a single-electron transistor.
We study the influence of Coulomb interaction on the thermoelectric transport coefficients for a metallic single-electron transistor. By performing a perturbation expansion up to second order in the tunnel-barrier conductance, we include sequential and cotunneling processes as well as quantum fluctuations that renormalize the charging energy and the tunnel conductance. We find that Coulomb inte...
متن کاملAnomalously low electronic thermal conductivity in metallic vanadium dioxide.
In electrically conductive solids, the Wiedemann-Franz law requires the electronic contribution to thermal conductivity to be proportional to electrical conductivity. Violations of the Wiedemann-Franz law are typically an indication of unconventional quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion of charge carriers, typically pronounced only at cryogenic...
متن کاملd-density wave state in an externalmagnetic field
We present a study of the electrical and thermal conductivities of the d-density wave (DDW) state in an external magnetic field B in the low temperature regime and in the presence of impurities. We show that in the zero temperature limit, T → 0, the Wiedemann-Franz (WF) law remains intact. For finite T the WF law violation is possible and it is enhanced by the external field.
متن کاملAnisotropic violation of the Wiedemann-Franz law at a quantum critical point.
A quantum critical point transforms the behavior of electrons so strongly that new phases of matter can emerge. The interactions at play are known to fall outside the scope of the standard model of metals, but a fundamental question remains: Is the basic concept of a quasiparticle-a fermion with renormalized mass-still valid in such systems? The Wiedemann-Franz law, which states that the ratio ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 115 5 شماره
صفحات -
تاریخ انتشار 2015